TXR Conelet HOLLOW CONE SPRAY

일반 어플리케이션

살충제 접촉식 훌륭함 침투식 좋음

특징

- 과수원이나 포도밭과 같은 기타 특수 작물 분사용.
- 균일한 80° 중공원형 스프레이 분사 패턴 형성.
- 일반적으로 사용하는 논 티젯 중공원형 스프레이 노즐을 대체할 수 있는 유량으로
- 고강도의 세라믹 재질의 오리피스가 고압에서 사용하기 적합한 내구성.
- 로우 프로파일 아세탈 노즐 바디는 잎에 대한 영향을 최소화하고 뛰어난 내화학성 제공
- 스냅핏 백업 플레이트는 작업 현장에서 안정적인 고정력을 제공하며 도구 없이도 쉽게 제거할 수 있어 세척이 용이함.
- TeeJet 98450 시리즈 황동 롤오버 밸브 및 TeeJet 캡 CP20230과 함께 사용하기 적합, 최대 토크는: 11 N-m.
- · Quick TeeJet 캡 CP114395-1-NYB 또는 114396-1-NYR(캡, 가스켓 및 O-링)과 호환. 자세한 내용은 119 페이지 참조.

스프레이 분사 패턴

입자 크기 분류

권장 압력 범위

2-25 바

이용 가능 재질

세라믹

TEEJET® TECHNOLOGIES TEEJET.CO.KR

TXR Conelet HOLLOW CONE SPRAY

스트레이너 메시 크기	용량 (I/min)																				
	2 바	3 바	4 바	5 바	6 ∐⊦	7 바	8 바	9 바	10 바	11 바	12 바	13 바	14 바	15 바	16 바	17 바	18 바	19 바	20 바	21 바	22 바
	0.173	0.209	0.239	0.265	0.289	0.310	0.330	0.349	0.367	0.383	0.399	0.414	0.429	0.443	0.457	0.470	0.483	0.495	0.507	0.519	0.530
100	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF
	0.230	0.280	0.321	0.357	0.390	0.419	0.447	0.473	0.497	0.521	0.543	0.564	0.584	0.604	0.623	0.641	0.659	0.676	0.693	0.709	0.725
30	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF
	0.325	0.394	0.452	0.503	0.549	0.591	0.630	0.666	0.701	0.733	0.764	0.794	0.823	0.850	0.877	0.903	0.928	0.952	0.976	0.999	1.02
	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF
50	0.433	0.525	0.603	0.671	0.732	0.788	0.840	0.888	0.934	0.978	1.02	1.06	1.10	1.13	1.17	1.20	1.24	1.27	1.30	1.33	1.36
	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF
50									1.05	1.10	1.15	1.19	1.23	1.28	1.32	1.35	1.39	1.43	1.46	1.50	1.53
							- 11	* *		* *	* *		- 1			* * *			- ' '		VF
50								1.11	1.17		1.27				1.46				1.63	1.67	1.70
	* *	- 11	***	11	* *	••	- ' '	11	• • •		* *	••	* *		* *	• • •	* * *		- 11	* *	VF
50																					2.04
	* * *	- 11	***	11		* * *	- 11	11	* * *	* *	* *	* * *	- 11	- 11	- 11	* * *	* * *	- 11	- 11	* *	VF 2.01
50																					2.81 VF
	* * *		111			* * *		11	- 11	* *	* *	* * *	- 11		* * *	- 11		- 11	- 11		3.18
50																					VF
	1.15								* * *							* * *			3.60	3.69	3.77
50	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF
50	1.29	1.58	1.82	2.03	2.23	2.40	2.57	2.72	2.87	3.01	3.14	3.27	3.39	3.51	3.62	3.73	3.84	3.94	4.04	4.14	4.24
	F	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF
50	1.58	1.93	2.22	2.48	2.72	2.93	3.13	3.32	3.50	3.67	3.83	3.99	4.14	4.28	4.42	4.55	4.69	4.81	4.94	5.06	5.18
	F	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF	VF
	100 100 50 50 50 50 50 50	100 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A = 7 2	A = ブ 2	A	A	Al 크기 2	1	1												

참고: 유량을 재확인하세요. 표시된 입자 크기 분류는 ISO 25358을 기준으로 합니다. 입자 크기 분류 기준은 변경될 수 있습니다. 표는 21℃ 물을 분사하는 것을 기준으로 합니다. 입자 크기 분류, 유용한 공식 및 기타 기술 정보는 기술 정보(179-202페이지)를 참조하세요

주문 방법

TEEJET* TECHNOLOGIES TEEJET.CO.KR